Abstract

Journal of Mechanical Engineering Advancements - Volume 2 (Issue 1) May, 2025

Pages: 26-42

Sustainable 3D Printing Filament Production from Recycled Nonbiodegradable Waste:

A Review

Author: Shriya Chakraborty, Arnab Das and Ranjan Kumar

Category: Manufacturing Engineering

Download PDF

Abstract:

The rapid growth of 3D printing technology has opened up new avenues for innovation across various industries. However, the increasing use of non-biodegradable polymers in 3D printing has raised environmental concerns due to their contribution to plastic waste. This review paper examines sustainable approaches to 3D printing filament production, with a focus on recycling non-biodegradable waste, such as plastics, to create high-quality filaments. The paper explores current research on the development of recycling methods, material properties, economic viability, and the environmental impacts of using recycled polymers for 3D printing.

Keywords: Sustainable technology, Nonbiodegradable waste, Recycling process, 3D Printing

Cite this article:

Shriya Chakraborty, Arnab Das and Ranjan Kumar, Sustainable 3D Printing Filament Production from Recycled Nonbiodegradable Waste: A Review, Journal of Mechanical Engineering Advancements. Vol 2 (Issue 1: January-April, 2025), pp 26-42.

References:

- 1. ASTM (2016) ASTM F42 Committee: Additive manufacturing standards. Available at: https://www.astm.org/COMMITTEE/F42.htm (Accessed: 20 August 2024).
- 2. Bai, Y., Liu, Z., Zhang, C., Wang, J., Zhang, X. and Zhu, Y. (2020) 'Characterization of algae-based biocomposites for sustainable 3D printing', Journal of Cleaner Production, 264, pp. 121634.
- 3. Cicala, G., Latteri, A., Ognibene, G., Portuesi, S., Blanco, I., Recca, G. and Pagano, C. (2017) 'Recycling of biocomposite polymeric materials for 3D printing', Polymers, 9(8), pp. 355.
- 4. Ellen MacArthur Foundation (2015) Towards a circular economy: Business rationale for an accelerated transition. Available at: https://ellenmacarthurfoundation.org/circular-economy-concept (Accessed: 20 August 2024).

- 5. European Commission (2020) A new circular economy action plan for a cleaner and more competitive Europe. Brussels: European Union.
- 6. Ford, S. and Despeisse, M. (2016) 'Additive manufacturing and sustainability: An exploratory study of the advantages and challenges', Journal of Cleaner Production, 137, pp. 1573–1587.
- 7. Garmulewicz, A., Holweg, M., Veldhuis, H. and Yang, A. (2016) 'Disruptive technology as an enabler of the circular economy: What potential does 3D printing hold?', California Management Review, 58(3), pp. 112–132.
- 8. Garmulewicz, A., Molina, C.B., Hornbuckle, D. and Pearce, J.M. (2018) 'Assessing the potential for distributed production of eco-friendly 3D printing filament', Materials, 11(7), pp. 1186.
- 9. Hopewell, J., Dvorak, R. and Kosior, E. (2009) 'Plastics recycling: Challenges and opportunities', Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), pp. 2115–2126.
- 10. Hubbard, M. and Marks, J. (2018) 'Carbon nanotube composites in 3D printing: Mechanical properties and potential applications', Advanced Materials, 30(9), pp. 1704823.
- 11. Huang, Y., Leu, M.C., Mazumder, J. and Donmez, A. (2020) 'Additive manufacturing: Current state, future potential, gaps and needs, and recommendations', Journal of Manufacturing Science and Engineering, 140(8), pp. 080801.
- 12. Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326.
- 13. ISO (2015) ISO 14001:2015 Environmental management systems Requirements with guidance for use. Geneva: International Organization for Standardization.
- 14. Lazarevska, M., Kaludjerovic, B., and Filipovic, M., 2021. Recycling and reuse of 3D printing waste in architecture: Opportunities and challenges. Journal of Cleaner Production, 288, p.125436.
- 15. Lee, D.; Lee, Y.; Kim, I.; Hwang, K.; Kim, N. Thermal and Mechanical Degradation of Recycled Polylactic Acid Filaments for Three-Dimensional Printing Applications. Polymers 2022, 14, 5385.
- 16. Levy, G.N., Schindel, R. and Kruth, J.P. (2020) 'Rapid manufacturing and its impact on the supply chain', Journal of Manufacturing Science and Engineering, 131(1), pp. 012019.
- 17. Mohamed, M.A., Mohamed, F.I., and Samy, N.N., 2020. Experimental investigation on recycled polymer filaments for additive manufacturing. Journal of Materials Research and Technology, 9(6), pp.13255-13265.

- 18. Maldonado, M., Smith, M.J. and Caravanos, J. (2019) 'The plastic pollution crisis in California: Legislative efforts and the pathway forward', California Journal of Politics and Policy, 11(2), pp. 65-85.
- 19. McDonough, W. and Braungart, M. (2013) The upcycle: Beyond sustainability Designing for abundance. New York: North Point Press.
- 20. Meyers, R., Wilson, D. and Wilson, J. (2020) 'Circular economy business models for 3D printing', Journal of Sustainable Manufacturing and Renewable Energy, 12(3), pp. 45-59.
- 21. Müller, F., Leising, J., Kruse, P. and Brecher, C. (2021) 'AI-based quality control in additive manufacturing: Real-time monitoring and adaptive production strategies', Journal of Manufacturing Processes, 63, pp. 132-145.
- 22. Musioł, M., Strzelec, K. and Chmielnicki, B. (2021) 'Hemp fiber-reinforced polylactide composites for 3D printing applications', Journal of Composites Science, 5(2), pp. 52.
- 23. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q. and Hui, D. (2018) 'Additive manufacturing (3D printing): A review of materials, methods, applications and challenges', Composites Part B: Engineering, 143, pp. 172-196.
- 24. Pearce, J.M., Blair, C.M., Laciak, K.J., Andrews, R., Nosrat, A. and Zelenika-Zovko, I. (2010) '3D printing of open source appropriate technologies for self-directed sustainable development', Journal of Sustainable Development, 3(4), pp. 17–29.
- 25. Rahimi, A. and García, J.M. (2017) 'Chemical recycling of waste plastics for new materials production', Nature Reviews Chemistry, 1(6), pp. 1-11.
- 26. Shah, N., Hashmi, S. and Kasapoglu, S. (2020) 'Solvent-based recycling of engineering plastics for sustainable filament production', Sustainable Materials and Technologies, 24, pp. e00153.
- 27. Stahel, W.R. (2016) 'The circular economy', Nature, 531, pp. 435-438.
- 28. Sudesh, K. and Iwata, T. (2008) 'Sustainability of bioplastics: Challenges and opportunities', Journal of Polymer Science Part B: Polymer Physics, 46(7), pp. 435-447.
- 29. Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.L., Bordes, A., and Marty, A. (2020) 'An engineered PET depolymerase to break down and recycle plastic waste', Nature, 580(7802), pp. 216-219.
- 30. United Nations (2019) Basel Convention on the control of transboundary movements of hazardous wastes and their disposal. Available at: https://www.basel.int/ (Accessed: 20 August 2024).
- 31. Xu, X., Liao, H., Smith, L. and Coates, P. (2021) 'Recycled plastics for aerospace applications: A case study on the use of 3D printing technology', Aerospace Science and Technology, 110, pp. 106449.

32. Zuniga, J.M. (2018) '3D printed prosthetics: Advances in materials and technology for amputee rehabilitation', Advanced Healthcare Materials, 7(8), pp. 1701271.